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Abstract
The aim of this paper was to investigate the effectiveness of pyrolyzed low-cost food waste 
natural materials from the food industry on the removal of chlorine from water. Biochar 
was produced after pyrolysis at 850 oC from malt spent rootlets (MSR), walnut shells, and 
apricot, olive, carob and grape kernels. The biochars were characterized for their surface 
area, microporosity, functional groups and pH. Continuous flow column experiments were 
conducted at varying flow rates to evaluate the efficiency of biochars to remove free and 
total chlorine. The initial free and total chlorine concentrations in water fed to the columns 
were 2.0 and 2.2 mg/L, respectively. The chlorine removal of free and total chlorine of all 
materials tested ranged from 76 to 92% and 80 to 95%, respectively, with the MSR exhibit-
ing the highest removal. MSR biochar was subjected to the highest cumulative water vol-
ume passed through the column (162 L/g) and exhibited the highest total chlorine removal 
capacity (6 to 330 mg/g). Olive kernel also reached high chlorine removal (99%), while 
apricot kernel, grape kernel, carob seed and pulp presented poor chlorine removals.

Highlights
• Biochar from food wastes is a promising option for chlorine removal from tap water.
• Malt spent rootlets (MSR) was the best material examined for removing chlorine.
• The highest total chlorine removal capacity of MSR was 330 mg/g.
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1  Introduction

Chlorination is the most common procedure for disinfection of water and wastewater. The 
main issue of chlorination is the oxidation reactions between chlorine and natural organic 
matter (NOM), which can result in the production of harmful by-products (Allard et  al. 
2013; Reguero et al. 2013; Liu et al. 2012; Bischel and Gunten 2000). NOM is a heteroge-
neous mixture of complex organic materials derived from both allochthonous and autoch-
thonous sources, associated with many biotic and abiotic processes (da Costa Cunha et al. 
2014; Zhao et al. 2016). In many cases, the protection of the distribution system is com-
pulsory, and a minimum concentration of 0.5 mg Cl2/L is recommended with a minimum 
contact time of 30  min and a water turbidity of ideally less than 1 NTU (WHO 2011). 
The recommended chlorine residual, which is centrally treated at the point of delivery, is 
0.2 to 0.5 mg/L for the protection of water in the distribution network (WHO 2011). The 
target of low chlorine residual dose (0.3 to 0.5 mg/L) leads to increase of the taste accept-
ability of chlorinated water and reduction in risk of waterborne diseases (Pickering et al. 
2019). Free chlorine residual is sometimes more than the required level and its removal is 
recommended. Furthermore, chlorine-free water is required by many industries and chlo-
rine removal is of great interest. There are many health concerns regarding the residual 
chlorine in water. The tolerable daily intake (TDI) of chlorine to humans is 150 µg/kg of 
body weight, which with an allocation of 100% of TDI to drinking water corresponds to a 
guideline value of 5 mg/L (WHO 2011).

Residual chlorine from water can be removed by various processes and the most common 
include sulfur compound or activated carbon (AC) (White 1999). Activated granular carbon, 
has been successfully used for the removal of chlorine from water (Magee 1956; Suidan et al. 
1977; Suidan et al. 1980; Jaguaribe et al. 2005; Li et al. 2010), chlorine dioxide gas (Wood 
et al. 2010), and trihalomethanes (Rasheed et al. 2016). Chlorine removal by granular activated 
carbon is quite effective. It involves the reduction of free chlorine on the AC surface, and the 
production of chloride ion and of oxygen-containing organic compounds (Suidan et al. 1977; 
Suidan et al. 1980; Ogata et al. 2013). The main disadvantages of AC are its high production 
cost and the use of specific facilities for the carbon activation. Alternatively, char or biochar 
is produced by pyrolysis in an oxygen limited environment under a wide range of temperature 
(Manariotis et  al. 2015). Biochar is a carbonaceous residue and has shown some significant 
potential for multiple applications (O’Connor et al. 2018; Lian and Xing 2017). These applica-
tions alongside with the large quantities of biochar in the natural water system may affect the 
disinfection byproducts, as biochar will react with various disinfectants. The usage of char is 
well known for centuries in order to purify water (Mason 1916) and is still widely used until 
today particularly in rural areas around the world for drinking water treatment (Kearns et al. 
2015) due to its highly porous structure, large surface area and abundant O-functional groups 
(El-Nagar et al. 2018). Biochar is an emerging low-cost material, which has found wide applica-
tion either for soil improvement, carbon sequestration and as sorbent for the removal of vari-
ous organic (Valili et al. 2013; Manariotis et al. 2015) and inorganic pollutants (Boutsika et al. 
2017). Biochar has been used to improve organoleptic properties, to remove organic contami-
nants and disinfection by-products (Kearns et al. 2015), and to study the catalytic dechlorination 
of chlorinated solvents (Ai et al. 2021).

The aim of this study was to evaluate the suitability of biochars derived from differ-
ent food waste materials as low-cost materials for the removal of chlorine from tap water. 
Six easily available materials including malt spent rootlets (MSR), walnut shells, and apri-
cot, olive, carob and grape kernels were examined. This paper presents the findings of an 

L. N. Sklivaniotis et al.Page 2 of 144



1 3

experimental study that investigated the use of biochar for the removal of chlorine from 
tap water using the above-mentioned materials. Column experiments were conducted and 
the performance of different biochars to remove free and total chlorine from tap water was 
evaluated under varying hydraulic loading conditions. According to the author’s knowl-
edge no comparative work has been carried out for the evaluation of low-cost natural mate-
rials for the removal of chlorine from water.

2 � Materials and Methods

2.1 � Materials Used and Biochar Preparation

The raw materials in order to produce biochar were malt spent rootlets (MSR), walnut 
shells (WS), apricot kernel (AK), olive kernel (OK), carob pulp and seeds (CP and CS), 
and grape kernel (GK). The materials were obtained from local enterprises. The biochar of 
MSR was prepared in two batches. All the materials were dehydrated for 24 h at 60 oC and 
stored in a desiccator before pyrolysis. Each dried material was separately weighted and 
placed into quartz (18.6 and 137 mL volume) and ceramic vessels (249 and 728 mL vol-
ume) that were closed with their respective caps. The vessel with the material was placed 
in a gradient temperature furnace (LH 60/12, Nabertherm GmbH, Germany) and pyro-
lyzed at 850 oC for 1 h under a static atmosphere with a limited amount of air. Based on a 
detailed study on the effect of pyrolysis temperature on biochar surface area (Manariotis 
et al. 2015), pyrolysis at high temperature produces biochars with the highest surface area. 
The mass of each material was weighted before and after pyrolysis and the weight loss was 
calculated. The biochar was powdered in a mortar before sorption experiments and sieved 
and the fraction from 1.18 to 1.7 mm was used.

2.2 � Biochar Characterization

The surface area and the pore volume of each biochar were determined by nitrogen gas 
adsorption - desorption with the Tristar 3000 Analyzer (Micrometrics GA, USA) using 
the Brunauer, Emmett, and Teller (BET) equation. Attenuated total reflection (ATR) spec-
troscopy analysis was performed using an Equinox 55 spectrometer (Bruker Optik, GmbH, 
Germanry). Scanning Electron Microscope (SEM) (JEOL, 6300, JEOL Ltd.) was employed 
to visualize the macroscopic structure of the materials before and after chlorine contact. 
The microscope was equipped with spectrometer energy dispersion X-ray (EDS), wave-
length dispersion X-ray (WDS), and Cryotrans. The pH of biochar suspension in distilled 
water was determined using a pH-meter (pH meter 310, Oakton Instruments, Singapore).

2.3 � Column Experiments

Flow-through experiments were conducted in Plexiglas and glass columns. The Plexi-
glass columns had a packed length of 12  cm and internal diameters of 0.7 and 1.3  cm, 
while the glass column had length of 30 cm and internal diameter of 1.0 cm. Each column 
was carefully packed with biochar to minimize air entrapment. Fresh tap water was col-
lected in a glass bottle before each experiment. The desired chlorine concentration in tap 
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water was achieved by the addition of an appropriate volume of a household bleach, 4% 
sodium hypochlorite solution, to achieve concentration of free and total chlorine of 2.0 and 
2.2 mg/L, respectively. The residual chlorine concentration of chlorine in tap water was 
quite low (< 0.2 mg/L). The biochar-packed columns were placed vertically and were fed 
with chlorinated tap water by a peristaltic pump (Masterflex, Cole Pamer Instrument, Co., 
Chicago, IL) in an upflow direction. All experiments were conducted at room temperature 
(~ 25 oC). The Experiments 5 (GK) and 6 (OK) were conducted in the 1.3-cm diameter col-
umn, the experiment 6 (OK1) with the 1.3-cm diameter column, the experiment 8 (OK2) in 
the 30-cm glass column, and the rest experiments in a 0.7-cm diameter column (Table 1).

2.4 � Analytical Methods

The concentrations of free and total chlorine in the influent and effluent of the column 
were determined using the DPD (N, N-diethyl-p- phenylenediamine) colorimetric method 
(APHA, AWWA, WEF 2012) using a portable photometer (model HI96701, Hanna Instru-
ments, Romania). A 10-mL sample volume was used for each determination. The uncer-
tainty of measurement at a concentration of 0.5 mg/L, as it is reported by the manufacturer, 
is 0.03 mg/L for both total and free chlorine, respectively.

2.5 � Statistical Analysis

Multiple regression analysis was used to determine the impact of different column dimen-
sions, flow rates, and cumulative volume on the concentration of free and total chlorine. 
Apart of the aforementioned variables in the regression analysis, the interaction between 
column and flow rate was also included. For the cumulative volume variable, different 
transformations were tested to increase the coefficient of determination.

Post-hoc multiple comparisons of means were also conducted to quantify the differ-
ences between levels of the factors “Column” and “Flow rate” and determine which levels 
significantly differ from each other. More specifically, due to the unbalanced experimental 
design, the Tukey’s Honest Significant Differences (HSD) procedure was run to the two-way 
ANOVA without interactions by computing all possible pairwise combinations of levels to 
identify pairs with significant differences between their means according to the Bonferroni 
Adjusted p values.

Table 1   Material properties after charring at 850oC

Code Biochar
Raw material

Weight loss
(%)

BET surface
(m2/g)

Pore volume
(cm3/g)

WS Walnut shells 81 536 0.305
CP Carob pulp 76 96 0.048
AK Apricot kernel 78 329 0.158
CS Carob seeds 76 98 0.049
GK Grape kernel 70 560 0.024
OK Olive kernel 75 73 0.030
MSR1 Malt spent rootlets 89 360 0.058
MSR2 Malt spent rootlets 85 209 0.102
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3 � Results and Discussion

3.1 � Biochar Properties

The BET surface area, the pore volume, and the weight loss of the materials after pyrolysis 
are given in Table 1. The weight loss after pyrolysis ranged from 70 to 89%. OK exhibited 
the lowest BET surface area (73 m2/g) followed by the CP and CS (96 and 98 m2/g). On the 
other side, the material with the highest BET surface area was the grape kernel (560 m2/g) 
followed by the WS (536 m2/g). In this work it was found that the biochar with the highest 
pore volume was the WS (0.305 cm3/g), while the smallest pore volume was found in GK 
(0.024 cm3/g).

For better observation of the different ingredients on the surface of the biochars, ATR 
spectra were obtained (Fig.  1). The surface of all raw biochar materials contains much 
more functional groups than the biochars after the passage of chlorinated water (washed). 

4000 3500 3000 2500 2000 1500 1000 500 4000 3500 3000 2500 2000 1500 1000 500

Fig. 1   ATR spectra of the materials examined. The letter U denotes biochar before exposure to chlorine
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More specifically, most of the materials demonstrate at least two or more of peaks at 3400 
(O-H), 2900 (CH3), 1700 (C = O), 1400 (C-H), 1100 (O-H), and 830 (C-H) cm− 1 (Xu et al. 
2013; Liu et al. 2015). This suggests that the surfaces of these materials, besides the ali-
phatic and aromatic C-H bonds, also contain polar groups with oxygen. The surface of the 
pyrolyzed materials contain less peaks with lower intensity or intensity that is considered 
insignificant. This suggests that the surfaces of the pyrolyzed materials contain less groups 
with most predominant peaks at 2900 (CH3) or 2300 (C-H) and 830 (C-H) cm− 1. The polar 
groups found on the raw material surfaces disappeared after pyrolysis.

All the materials were basic in nature, with pH values that ranged from 8.7 to 11 
(Table 2). The difference of pH through time for most of the materials was between 0.1 and 
0.5 pH units, except for AK, where an increase of 1.4 pH units was observed after 48 h. 
The material with the highest pH values was the MSR, which reached a value of 11 after 
24 h.

SEM images were examined in biochar before and after the contact with chlorine (Sup-
plementary Material (SM); Fig. SM1). As it can be seen, in carob seeds (CS) and apricot 
kernel (AK), the surface after the chlorination is smoother than before. Moreover, in malt 
spent rootlets (MSR1 and MSR2), in olive kernel (OK and OK’) and in grape kernel (GK) 
it is observed that there are sharper edges and more tough surface after the experiment. 
Finally, in the three samples, carob pulp (CP), walnut shell (WS) and olive kernel (OK2), 
no differences can be identified.

Free chlorine is removed in carbon filters by the following reaction (White 1999):

where C* is the active carbon and CO* is the surface oxide on carbon.
If significant amount of HOCl are allowed to react with the carbon some of the oxygen 

attached to the carbon surface may be emitted as CO or CO2 gas as shown in the following 
reaction:

A part of carbon is permanently destroyed during Reaction (2), and stoichiometrically 
one part of mass of carbon is destroyed by 11.8 parts of mass of chlorine. In the case of 
free chlorine, carbon is chemically exhausted and carbon should be replaced. Physical 
exhaustion of carbon occurs when chlorine is in the form of combined (i.e., chloramines), 
and in this case carbon can be regenerated (White 1999; Komorita and Snoeyink 1985).

(1)C
*
+ HOCl → CO

*
+ HCl

(2)C + 2Cl
2
+ 2H

2
O → 4HCl + CO

2

Table 2   pH of the materials 
tested through time

Biochar Contact time (h)

0.17 24 48

WS 10.0 10.2 10.1
CP 10.1 10.4 10.5
AK 8.7 9.9 10.1
CS 10.1 10.4 10.3
GK 10.1 10.6 10.6
OK 9.8 9.9 9.7
MSR1 11.0 11.0 10.9
MSR2 11 10.6 10.5
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3.2 � Flow‑Through Experiments

Νine experiments were conducted as it can be seen in Table 3. The influent and effluent 
chlorine concentration is graphically shown in Fig. 2. In column 1 (WS), the concentra-
tion of both free and total chlorine in the effluent ranged from 0 to 0.5 mg/L, throughout 
the experiment that lasted 2508 h and 29.15 L passed through the column. In column 2 
(CP), free chlorine concentration started to rise from 0.5 to 1 mg/L after passing 30 L, and 
the flow rate was boosted from 4 to 8 mL/min. In column 3 (AK), free and total chlorine 
remained stable throughout the experiment, which lasted 298  h and 30.2  L passed. The 
effluent was around 0.3 and 0.6 mg/L for free and total chlorine, respectively. In column 
4 (CS), free chlorine remained at about the same concentration, around 0.3 to 0.4 mg/L 
at a flow rate of 4 mL/min. The increase of flow rate to 8 mL/min resulted in higher free 
chlorine concentration above 1.5 mg/L. In column 5, GK was only tested for free chlorine. 
It can be seen that chlorine values had an increasing ratio from 0.4 to 1 mg/L after passing 
5 L. The flow rate changed several times without any significant impact on the chlorine 
concentration. In column 6 (OK1), free chlorine concentration remained the same (0.3 to 
0.4 mg/L) throughout the experiment after 298 h of operation and passing 34.1 L. On the 
contrary, total chlorine concentration was steadily above 0.5 mg/L, and when the flow rate 
increased from 4 to 8 mL/min, the concentration was over 1.2 mg/L. Furthermore, in the 
glass column, we used the higher biochar quantity from any other batch, 10.5 g of OK2 
(Column 7), and the flow rate was changed many times from 2 to 32 mL/min in order 
to examine the behavior of biochar at varying loading conditions. Free and total chlorine 
concentrations in the effluent of the column surprisingly remained under 0.5 mg/L during 
the whole experiment after 198 h, and passing 87.38 L contrary to the rest of the columns, 
where the concentration of free and total chlorine raised after a specific time.

Finally, two different batches (Columns 8 and 9) were used for biochar from malt 
spent rootlets. The free chlorine concentration remained steadily under 0.4  mg/L in 
column 8 (MSR1), while total chlorine concentrations fluctuated around the limit of 
0.5 mg/L, independently of the increase of the flow rate applied. In addition, in column 
9 (MSR2) the free chlorine concentration decreased when the flow rate decreased from 

Table 3   Flow-through experiments

*HRT (hydraylic retention time): based on void volume

Column Biochar Void Column Flow HRT* Water volume

number Code Mass volume volume rate passed

(g) (mL) (mL) (mL/min) (min) (L) L/g

1 WS 2.8 2.39 15.93 2–4 0.6–1.2 29.15 10.4
2 CP 1.44 3.20 4.54 2–8 0.4–1.6 36.83 25.6
3 AK 2.72 2.34 4.54 2–8 0.3–1.2 30.12 11.1
4 CS 2.46 2.79 4.54 2–8 0.4–1.4 44.83 18.2
5 GK 4.31 5.05 4.54 1–8 0.6–5.0 20.85 4.80
6 OK1 7.22 5.43 15.93 2–8 0.7–2.7 34.10 4.70
7 OK2 10.5 13.78 23.56 2–32 0.4–6.9 87.38 8.30
8 MSR1 1.15 3.45 4.54 2–8 0.4–1.7 47.06 40.9
9 MSR2 0.77 4.40 4.54 2–4 1.1–2.2 124.83 162
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4 to 2 mL/min and for the rest of the experiment remained at concentrations close to 
zero. In most columns, when the flow rate was increased from 4 to 8 mL/min, the con-
centration of the free and total chlorine were also increased, resulting in concentrations 
over 0.5 mg/L. The chlorine concentration was decreased when the flow rate dropped 
again to 4 mL/min. It must be noticed that when the flow rate decreased from 8 to 4 mL/

Fig. 2   Free and total chlorine concentration in the biochar packed columns
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min the concentration of free chlorine decreased too, since the contact time between the 
chlorine and the materials increased.

From the seven materials examined, the lowest efficiency of 80 and 75% for free and 
total chlorine, respectively, was observed for the carob seeds (CS). In contrast, the best 
material was the malt spent rootlets samples (MSR) with over 90% removal for both free 
and total chlorine. Giles and Danell (1983) reported that activated carbon reached a total 
chlorine concentration of 40 to 70 µg/L from an initial concentration of 80 to 530 µg/L for 
flow rates ranging from 5 to 271 L/min. The total volume of water that passed through the 
filter was 115 times the carbon bed volume.

3.3 � Chlorine Mass Balance

The mass balance of free and total chlorine is shown in Tables  4 and 5, respectively. 
Throughout the experiment and for all the tested materials, the removal of the free chorine 
was higher in comparison with the total chlorine. Τhis result was observed in the MSR with 
values of 95.1 99.1% for MSR2 and MSR1, respectively. MSR2 and MSR1 exhibited the 
highest free chlorine mass retention capacity (308 and 76 mg/g, respectively). On the con-
trary, the lowest free chlorine mass retention was found for GK and OK (8.1 and 8.4 mg/g, 
respectively). Concerning the total chlorine, again MSR had the best efficiency with 330 
and 73 mg/g for MSR2 and MSR1, respectively. In addition, MSR2 and WS exhibited the 
highest removal efficiency with 92.5 and 85%, respectively. On the other hand, the materi-
als with the lower removal efficiency were OK1 and AK with 5.8 and 12.7 mg/g, respec-
tively, whereas the least total chlorine removals of 75.5% and 79.3% were noticed for carob 
products (CS and CP). It must be mentioned that all materials achieved free and total chlo-
rine removals over 80 and 75%, respectively.

Jaguaribe et al. (2005) investigated the performance of activated carbons prepared from 
different materials, i.e., sugarcane bagasse, babassu and coconut shells, in batch experi-
ments. Sugarcane bagasse was capable to remove 100% the residual chlorine, while the 
other materials was around 40% for a contact time of 60 min. The iodine number of sug-
arcane was almost twice the value of the other two materials. Li et  al. (2010) reported 
that coconut carbon, compared to coal and fruit nuts carbon, exhibited the highest sorption 

Table 4   Free chlorine mass balance in the breakthrough column experiments

Experiment Free Chlorine

Influent Effluent Retained Retained Removal

(mg) mg/g (%)

WS 56.1 7.8 48.4 17.3 86.1 (74.4–100)
CP 73.7 12.0 61.6 42.8 83.6 (45–100)
AK 60.4 6.7 53.8 19.8 88.9 (72.5–100)
CS 89.7 17.8 71.9 29.2 80.1 (35–100)
GK 41.7 6.6 35.1 8.1 84.1 (53–100)
OK1 68.2 7.9 60.3 8.4 88.3 (74.5–100)
OK2 191 25.6 165 15.8 86.5 (69.5–100)
MSR1 94.1 6.6 87.5 76.1 92.9 (69.5–100)
MSR2 250 12.2 238 308 95.1 (71.5–100)
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capacity. They also reported that phenol number compared to iodine number was better 
indicator for free chlorine sorption capacity. The iodine and phenol numbers are useful 
indicators for the effectiveness of carbons for the removal of low molecular weight com-
pounds (around 1 nm) (Zhang et al. 2007). The iodine number is related to the capacity for 
small and/or non-polar molecules, while the phenol number for small polar and/or aromatic 
organic malecules (Li et al. 2010). A minimum value of 500 mg/g of the iodine number 
is recommended for powdered activated carbon for the removal of low molecular weight 
compounds (Jaguaribe et al. 2005).

3.4 � Statistical Analysis Results

The ANOVA tables of the two multiple regression models are presented in Table  SM1. 
For both models the transformation cumulative volume− 1/2 was adopted for the cumulative 
volume variable since this transformation presented the best fit to the data. For both mod-
els all variables were statistically significant for the total chlorine concentration at 0.001 
level (p < 0.001) except cumulative volume− 1/2 variable, which was significant at 0.05 level 
(p = 0.012). The coefficient of determination for the free and total chlorine concentration 
models were 0.5133 and 0.5829, respectively, indicating a relatively strong linear associa-
tion between the dependent and the explanatory variables.

Based on the interaction plot (Fig. 3) between the column and flow rate factors for the 
free (left plot) and total (right plot) chlorine concentrations, it seems that the minimum con-
certation for the free and total chlorine concentrations is obtained using Column 9 (packed 
with MSR), under all flow rates with an exception of a flow rate of 2 mL/min for the free 
chlorine. In this case, Column 9 (MSR2) presents the higher concentration of the free chlo-
rine. Regarding the marginal grouping information as obtained by the Tukey’s HSD pair-wise 
comparisons test (with Bonferroni Adjusted p values) on the two-way ANOVA without inter-
action (Table 6) it seems that Column 9 (MSR2) presents again an overall better behavior. 
Regarding the flow rate, it seems that the best performance is observed when the flow rate is 
4 mL/min. Based on the experimental results, no clear correlation was observed between the 
specific surface of the materials examined and their efficiency in removing chlorine. Meng 
et al. (2019) studied the removal of chlorine from water by activated carbons with similar sur-
face and porosity. The differences found in chlorine removal were not attributed to the surface 
area, and most of the removal occurred in the micropores of activated carbon.

Table 5   Total chlorine mass balance in the breakthrough column experiments

Experiment Total Chlorine

Influent Effluent Retained Retained Removal

(mg) (mg/g) (%)

WS 61.0 9.10 51.9 18.5 85.1 (79.1–100)
CP 52.8 10.9 41.8 29.1 79.3 (42.7–100)
AK 42.4 7.90 34.5 12.7 81.3 (65–100)
CS 64.6 15.8 48.8 19.8 75.5 (20.9–100)
OK1 52.2 10.0 42.3 5.80 80.9 (46.4–100)
OK2 204 31.3 173 16.5 84.7 (71.4–100)
MSR1 104 19.2 84.3 73.3 81.4 (70.5–100)
MSR2 275 20.6 254 330 92.5 (69.1–100)

L. N. Sklivaniotis et al.Page 10 of 144



1 3

4 � Conclusion

The usage of biochar from agro-industrial wastes in the removal of chlorine from tap water 
appears to be a highly promising option for replacing activated carbon in common filters. 
The low-cost materials associated with high capacity of removing chlorine can be proved 
useful. The use of six different types of wastes showed significant variation in terms of 
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Fig. 3   Interaction plot between the column and flow rate factors for the mean free (left plot) and total (right 
plot) chlorine concentration in the biochar packed columns

Table 6   Grouping information based on Tukey’s HSD pair-wise comparisons procedure on the two-way 
ANOVA without interaction according to the Bonferroni Adjusted p values for the Free (upper half) and 
Total (lower half) chlorine concentration

Column Mean con-
centration
(mg/L)

group Flow rate  
(mL/min)

Mean group

Free chlorine concentration
 4 (CS) 0.333 C 8 0.480 C
 5(GK) 0.279 B C 2 0.230 B
 8(MSR1) 0.275 B C 4 0.160 A
 1(WS) 0.254 B C
 2(CP) 0.253 B C
 3(AK) 0.214 A B
 6(OK1) 0.202 A B
 9(MSR2) 0.126 A

Total chlorine concentration
 4(CS) 0.694 D 8 0.663 B
 2(CP) 0.581 C 2 0.425 A
 3(AK) 0.517 C 4 0.356 A
 6(OK1) 0.498 C
 8(MSR1) 0.375 B
 1(WS) 0.292 B
 9(MSR2) 0.192  A
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chlorine removal. The highest total chlorine removal capacities ranged from 6 to 330 mg/g, 
and malt spent rootlets was the best material compared to the others. Olive kernel was the 
second efficient material in removing total chlorine, whilst carob seeds and pulp had the 
lowest free and total chlorine removal. The results of the present study indicate the feasibil-
ity of pyrolyzed food waste residues to develop low-cost materials for the removal of chlo-
rine from water and wastewater.
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